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Background: ML apps often behave in unintended ways
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Primary approach: Focus on improving the model

Example Approach:
Increase regularization

by applying dropout

Classification

Regression

Source: MathWorks

Right Fit Underfitting

Problem: This is only one piece of the puzzle!

Example Approach:
Improve model capacity
by increasing the number
of parameters




Observation 1: Data is a crucial piece of the puzzle
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Challenge 1: Can we identify the most important data errors? 4



Observation 2: ML apps are built by complex pipelines

Data errors originate here

|
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Data errors are observed here
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Challenge 2: Can we trace data errors as they pass through the pipeline?



Observation 3: Not all data errors are meant to be fixed

For each data error,
we can choose to
perform one of the
following actions:

Benefits:

Shortcomings:

Optimal trade-off:

Challenge 3: Can we ensure reliable model performance afier (partial) data repairs?

Discard @

Remove the faulty data from the
training set.

Repair »

Perform manual quality control
which might include repeating
the data acquisition process.

Ignore ﬁ

Let the faulty data remain in the
training set.

Easy to Perform

Data Quality Improves

No Labor Required

Loss of Useful Data

Often Labor-intensive

Risk Hurting Model Quality

Discard or Repair the Portion of Data that will Bring the Highest Model Quality Increase




Tutorial Overview: Data Errors in ML pipelines

Source Data Training Trained Predictive Quality Metric
Data Model Query Result Results
Cancer Death Rate
BRCA| 10% Correctness Metric
e SKCM 2% Features Labels accuracy 0.87
Diagnosis Race  Sex Age Alive — Preprocessing _— TM{)d.e] Précllllgrt;rve . %uel;y a fl s;;);:m o
raimin d valuation
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t Predictive
Data Errors Query Result
! . . . . . Errors
. any kind of problems in the training data that cause problems in model behavior :
s 1
Part I: Data Importance for Data Part II: Data Debugging in ML Part III: Learning from
Error Detection Pipelines Uncertain and Incomplete Data
What are good approaches for What are practical challenges when When we cannot repair all errors,
dentifying data errors? debugging complex ML pipelines? can we still have reliable models?




Opportunities for the Data Management Community

(1) Data quality is an established discipline in data management, but most
practitioners still rely on manual effort.

(2) ML pipelines are data processing pipelines. Models are learned data
transformation operators. Many systems have been developed, but most
practitioners still rely on rudimentary scripts for crunching data.

(8) Many promising methods for handling data errors suffer from scalability issues.

Main Goal: Present the current state of the art and inspire novel research.



Part I:
Data Importance for Data Error Detection

Bojan Karlas
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Introducing the Concept of Data Importance

How can we identify data errors?

Trivial Not So Trivial

invalid biased Solution approach:
Diagnosis Race Sex Age Alive — Measure the impact of the value on
model quality.

Solution approach:
Apply a rule-based validation function
that performs a dictionary lookup.

How do we measure this?
That is the main topic of this part of the
tutorial.

Solution approach:
Check if the value is marked as missing.

missing

Data errors are any kind of problem in the training data that cause problems in model behavior.

Challenge: Can we define a unified way to think about identifying data errors?



Introducing the Concept of Data Importance

We can define a data attribution function

Data Data

Importance Aég:lbcltlit;gn Diagnosis Race Sex Age Alive
Correctness Metric
accuracy 0.87
likely errors (P TM(_)d_el —» E N{ode_l | & P B
LT 5 yauation equalized odds 0.84
predictive parity

Stability Metric
Ll entropy [016]

Data errors are any kind of problem in the training data that cause problems in model behavior.
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Introducing the Concept of Data Importance

How do we use importance to detect data errors?

Model
Training
Pipeline

Attribution Function Example 1:

def compute_importance(value):

return -1.0 if value == “n/a” else 1.0

Diagnosis Race Sex Age Alive

Attribution Function Example 2:

VALID CANCER_CODES = ...

def compute_importance(value):

if value not in VALID_CANCER_CODES:

return -1.0
return 1.0

Data
Importance

0.664

Diagnosis Race Sex Age Alive

Human-in-the-Loop
(optional)

Data Repair

BRCA | other no
yes
CRC no
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Introducing the Concept of Data Importance

What makes a good attribution function?

Design Consideration 1 Design Consideration 2
Which model quality metric do we What kind of intervention do we
; no? . ; 2
care about improving: Data errors are any kind of intend to apply:
_ problem in the training data that
Correctness Metric b l s de l be havior .
accuracy cause problems in mo . @ Discard
fl score
Fairness Metric .
equalized odds /‘ Rep air
predictive parity " '
Stability Metric Somet anE se
2
o]
)
o}
— .
[3) Ineffective
L ffe
O
2 * Assuming higher is better _

Number of Interventions

T

Challenge: How do we define an effective attribution function?




2) Examples of Data Attribution Functions

3) Case Study of Shapley Value as a Measure of Importance
4) Applications of Data Importance
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Examples of Data Attribution Functions

Leave-one-Out Error

[Approach: Marginal Contribution]

Data
Importance

|

LOO Error  Features Labels

_)_ - - Model <> Model _ i
| Training .’ Evaluation| L2ty metric | 0.87
repeat for all Marginal
data points Difference
Features Labels Computation
Model <> Model - -
| Training " Evaluation| -2ty metric | 0382

Benefits:

e Removing important data points affects model quality. Very simple to implement
[ ] Yy .
A h:
BEEaes Shortcomings:

e Remove a data point from the training set, train and . . .
evaluate the model again e Requires re-training the model once for each data point.

e Interpret the difference in model quality as data e Treats data points independently.

importance.



Examples of Data Attribution Functions

Exrror Gradient :

5 20
P X
e 515
&3 10
[Approach: Gradient] 32 | 3
Traini ETR AN 25
raining s e s
Labels 0 — . - $ 0 . : 7 ; ]
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Data 3
Y3 Importance ~Dirty **AC ~AL =“NM =NM+D
Training Predicted Training A
Features Labels Loss Gradients

A i)
r {fol-to IO L HEE W s o
3 Ys 3 3 R EERREET e Data points vary in their contribution to the
New Current ! gradients that update the model.

Parameters Parameters €—m e —— J

Approach:

e Importance is proportional to the magnitude of
the gradient.

Mean

Benefits:
e Simple to compute.
Shortcomings:

e Treats data points independently.

ActiveClean: Interactive Data Cleaning
For Statistical Modeling

Sanjay Krisfnan, Jiannan Wang', Eugene Wu, Michael J. Frankin, Ken Goldberg
imon Fraser Universiy, " Columbia Universty

1. e
UG Berieley, ISimon 3 moia U
sanjayishnan, frankin, goldberg) @erkeleyed - jnwang@stuca

em@cs coumbia sdu

[Krishnan VLDB’16] 17
Krishnan, Sanjay, et al. "Activeclean: Interactive data cleaning for statistical modeling." Proceedings of the VLDB Endowment 9.12 (2016): 948-959.
[Paper][Website]



https://www.vldb.org/pvldb/vol9/p948-krishnan.pdf
https://activeclean.github.io/

Examples of Data Attribution Functions

Influence Function

[Approach: Marginal Contribution, Gradient]
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Pii = e =0 90 0 20

Pang Wol Ko Porey Liang

[Koh ICML ‘17]

PMLR, 2017. [Paper][Code]
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e The marginal contribution of a
single data point can be
approximated with gradients.

Approach:

e Introduce presence indicator
variables ¢ for each data point and
compute the gradient w.r.t. e.

Benefits:

e Easily applicable to arbitrarily
complex (twice) differentiable
machine learning models.

Shortcomings:
e Treats data points independently.

Koh, Pang Wei, and Percy Liang. "Understanding black-box predictions via influence functions." International conference on machine learning.
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https://proceedings.mlr.press/v70/koh17a
https://github.com/kohpangwei/influence-release

Examples of Data Attribution Functions

Area Under the Margin

[Approach: Uncertainty Analysis]

Training
Labels
Data
Y2 Importance
Y3
Current Area
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puay Lo i s
C t A
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Identifying Mislabeled Data using the Area Under the
Margin Ranking

GeottPlis’ ‘Tl Zhang! Ethan Elenbers
Columiia Uniersty Stanford University Asarp

Killan Q. Weinberger
ASAPR Coracl Uniersy

Abstract

[Pleiss NeurIPS ‘20]
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% Data Removed

e If similar samples have the same label, the model
will learn to activate only the correct logit.

e In the presence of mislabeled samples, the model
will learn to activate alternative logits.
Approach:
e The importance of a data point is proportional to
its margin averaged across all training epochs.
Benefits:

e Very simple to implement in a wide array of
models.

e Does not rely on a separate clean dataset.

Shortcomings:
e Focuses only on label noise.

19

Pleiss, Geoff, et al. "Identifying mislabeled data using the area under the margin ranking." Advances in Neural Information Processing Systems 33
(2020): 17044-17056. [Paper][Blog][Code]



https://proceedings.neurips.cc/paper/2020/hash/c6102b3727b2a7d8b1bb6981147081ef-Abstract.html
https://geoffpleiss.com/blog/aum.html
https://github.com/asappresearch/aum

Examples of Data Attribution Functions 4
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[Northcutt JAIR ‘21] 20

Northcutt, Curtis, Lu Jiang, and Isaac Chuang. "Confident learning: Estimating uncertainty in dataset labels." Journal of Artificial Intelligence
Research 70 (2021): 1373-1411. [Paper][Blog][Code]



https://doi.org/10.1613/jair.1.12125
https://l7.curtisnorthcutt.com/confident-learning
https://github.com/cleanlab/cleanlab

Examples of Data Attribution Functions

Model Training Outcome

[Approach: Surrogate Data Model]

Features Labels

——— —
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Indicator Features Labels

Subset __}I—, L
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Selector ] ,—l_) Training

Datamodels: Predicting Predictions from Training Data

[Ilyas ICML ‘22]

Actual Model Output

Evl;/{?lgfllon ——{ quality metric [ 0.87 |
Data
Importance
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Parameters
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Quality Predictor 02
3
20
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0
0 10

Predicted Model Output

e Alinear model can be good at predicting
the quality of a model trained on an
arbitrary subset of the training data and
tested on a single test example.

Approach:

e Train a linear quality predictor and
interpret its parameters as data
importance.

Benefits:

e Conceptually simple yet powerful
framework for analyzing datasets.

Shortcomings:

e The original method requires retraining
the model many times.

Ilyas, Andrew, et al. "Datamodels: Predicting Predictions from Training Data." Proceedings of the 39th International Conference on Machine
Learning. 2022. [Paper][Blog][Code]
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https://proceedings.mlr.press/v162/ilyas22a
https://gradientscience.org/datamodels-1/
https://github.com/MadryLab/datamodels

3) Case Study of Shapley Value as a Measure of Importance

4) Applications of Data Importance

22



Case Study of Shapley Value as a Measure of Importance

Improving Upon the Marginal Contribution Methods

Marginal contribution methods treat data points independently, ignoring any

interactions that might exist.

Shapley value

Consequence

Let there be a data point that has high importance. If we make two copies of that data
point, their individual marginal contribution to the dataset as a whole will be zero.

A standard method from game theory for
distributing surplus among a coalition of players.

Approach

We should measure marginal contribution over all subsets.

Features  Labels

Model
Training

r >
L

Iterate over

all subsets S Features Labels

Model
Training

| 7 -
|

<>
=

<>
=

Model
Evaluation

Model
Evaluation

N-1\—1 .
i = (5 (@S U{i}) —u(s))
SCX\{i}
Normalization
Factor
(]\JIS_’|1) - Nholtzr:l;ilizeld Dt{lll
Difference Importance

quality metric

Marginal

|

Shapley
Value

Difference

Mean

—{P

quality metric
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Case Study of Shapley Value as a Measure of Importance

Effectiveness at Data Debugging

Figure 2: The experiment result of (a) noisy label detection on
fashion-MNIST dataset; (b) instance-based watermark removal
on MNIST dataset; (c) data summarization on UCI Adult Census
dataset [15]; (d) data acquisition on MNIST dataset with injected
noise. In (a)-(b) the “random” line shows the results of random

—=— TMC-Shapley

—=— TMC-Shapley G-Shapley

§ GShapley s el s Ove Ot guess; while in (c)-(d), the “random” line corresponds to the empir-
2 A +~ Leave-One-Out KNN-LOO g . . . .
£ KNNLOO —— KNN-Shapley ical results of the random baseline introduced in Section 4.1.

Fraction of backdoor images detected (%)

—e— KNN-Shapley
--- Random

—e— max-KNN-Shapley
--- Random
100 100

» w 0 &0 e o 0 &
Fraction of data inspected (%) Fraction of data inspected (%)

(a) Noisy labels detection (b) Watermark removal
+— Leave-One-Out G Shapley —e— KNN-Shapley #— Leave-One-Out KNN-LOO - Random
—e— TMC-Shapley KNN-LOO  ---- Random e~ TMC-Shapley —e— KNN-Shapley

Table 2: Domain adaptation between MNIST and USPS.

Prediction accuracy (%)
Prediction accuracy (%)

Method MNIST — USPS USPS — MNIST
=E i -
TR, T Ceebsme KNN-Shapley ~ 31.70% — 47.00%  23.35% — 29.80%

ot it KNN-LOO 31.70% — 37.40%  23.35% — 24.50%

e &) Dasa. aEqusition. TMC-Shapley ~ 31.70% — 44.90%  2335% — 29.55%
LOO 31.70% — 29.40%  23.35% — 23.53%

Scalability vs. Utility: Do We Have to Sacrifice One for the Other in Data
Importance Quantification?

[Jia CVPR21]
Jia, Ruoxi, et al. "Scalability vs. utility: Do we have to sacrifice one for the other in data importance quantification?." Proceedings of the IEEE/CVF 24
Conference on Computer Vision and Pattern Recognition. 2021. [Paper] [Code]



https://arxiv.org/abs/1911.07128
https://github.com/AI-secure/Shapley-Study

Case Study of Shapley Value as a Measure of Importance

Benefits and Challenges

Beneficial Properties of the Shapley Value

Symmetry

If two data points have the same contribution to every subset,
their value should be the same.

Efficiency

The sum of importances of all data points should equal the
marginal contribution of the entire set over an empty set.

Key Challenge

The number of subsets to enumerate is exponential,
making it intractable to compute the exact Shapley
value for an arbitrary model.

pi=% ¥ (5 (s U{i}) —u(s))

SCX\{i}

Linearity

If the utility function can be expressed as a sum of two other
functions, then the importance of a data point using the
combined function should equal the sum of importances
computed using the individual functions.

Null Player

If a data point has a zero marginal contribution to every single
subset, its importance should be zero.
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Case Study of Shapley Value as a Measure of Importance

Approximation: Monte Carlo Sampling

Challenge
Computing Shapley values is intractable.

Since Shapley value can be seen as a statistic
over exponentially many subsets, we can
estimate it using Monte Carlo sampling.

Approach

Use the permutation-based definition of the
Shapley value and sample permutations.

@) = = Y (PR U (i}) — o(PP)]
R

¢i = Eran[V(SL U{i}) — V(SL)]

Beta Shapley: a Unified and Noise-reduced Data Valuation
Framework for Machine Learning

[Kwon AISTAT'S ‘22]

Challenge

We need many Monte Carlo samples to
produce good estimates.

When estimating the marginal contribution
of a data point to a subset, we empirically
observe that larger subsets incur a slower
signal-to-noise ratio.

Dataset: Gaussian-Reg
230 &
Bas 80
e Q08

Dataset: Gaussian-CIf

£2.0- 5
H H
21s £us
5 ]
2 2oa
5L =

o.
50100 150 200 250 300 350 400

05
50 160 150 200 250 300 350 400
i Cardinality j

Cardinality j

Approach

Leverage the importance sampling strategy
and apply a larger weight to smaller subsets,
based on the beta distribution.

Benefits

Estimating the Shapley value becomes
tractable and is shown to be effective at
identifying important data points.

Removing high Removing low
value data value data

Breast Cancer

Skin Cancer

[] 20 a0 . [} 20 a0
Fracton of train data remaved (%) Fraction of train data removed (%)

(a) (b)

Shortcomings

Each Monte Carlo sample relies on
retraining the model from scratch, which is
expensive for large models.

Kwon, Yongchan, and James Zou. "Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning." International

Data Shapley: Equitable Valuation of Data for Machine Learning

Amirata Ghorbasi ' Jumes Zoo

Abstract

[Ghorbani ICML ‘19]
Ghorbani, Amirata, and James Zou. "Data shapley: Equitable valuation of data for machine learning." International conference on machine 26
learning. PMLR, 2019. [Paper] [Code]

Conference on Al and Statistics. 2022. [Paper] [Code]



https://proceedings.mlr.press/v151/kwon22a
https://github.com/ykwon0407/beta_shapley
https://proceedings.mlr.press/v97/ghorbani19c.html
https://github.com/amiratag/DataShapley

Case Study of Shapley Value as a Measure of Importance

Approximation: K-Nearest Neighbor Surrogate Model

Challenge

To get good Shapley value estimates, we
need to retrain the model many times.

The simple KNN classifier can make it easy
to design efficient and exact algorithms.

Approach

Use the KNN model as a proxy to develop an
exact Shapley computation algorithm with

Example Situation

o We are computing the Shapley value of data point i
o Data is sorted by similarity to the validation data point

Observation 1:
Since K=1, for any subset S, the top-1 data
point will determine the model prediction.

Validation Validation
Features Labels

J

Training ~ Training
Features Labels

Starting point: Shapley value definition
_1\ 1 .
b=t 2 () @S U - uls)
SCx\{i} N J

Observation 2:
If data point i is not in the
top-1, this term will be zero.

Dynamic Programming

pi(t) = £ XN S () T (u({a) — u{ih) (V)

Final Simplification

/ ¥ lexi i) m Observation 3:
polynomual trme complexity. ] If the subset S contains these data points, 1 N N
T ) boint 1 wi > the tob- . — = 1 _ y J
‘ 2 Y2 the data point i will not be the top-1. ©i (t) =% Zj:i-i—l (u({z}) u({]})) (j+1 )
i —’-
Z4 Y4 | _ Observation 4:
j—> &5 Ys If data point j is going to become the top-1
X6 Ys afier i is removed, all data points above it
cannot be included in S, whilr) the ones Result:
below may or may not be included in S. Aﬁer sorting the data, we can compute
exact Shapley values in a single pass.
Final computational complexity is
Efficient Task-Specific D::gao‘:ft::l;tsion for Nearest Neighbor O(N log N )
&=
¥l [Jia VLDB ‘19]
e Jia, Ruoxi, et al. "Efficient task-specific data valuation for nearest neighbor algorithms." Proceedings of the VLDB Endowment 12.11 (2019): 27

1610-1623. [Paper] [Code


https://www.vldb.org/pvldb/vol12/p1610-jia.pdf
https://github.com/AI-secure/KNN-PVLDB

Case Study of Shapley Value as a Measure of Importance

Approximation: Taylor Expansion

Challenge

If we are using a large and complex model, retraining will
be extremely slow (preventing Monte Carlo approaches),
and the KNN approximation will be biased.

Models trained with stochastic gradient descent (SGD)
compute the loss function many times, over many random
subsets of the training dataset. Furthermore, the changes in
the model quality metric that are small enough to be
effectively approximated with Taylor expansion.

Approach

Redefine the utility function to measure the cumulative
impact of a training data point on the validation loss across
gradient update steps.

wicLR 205

DATA SHAPLEY IN ONE TRAINING RUN

[Wang ICLR ‘25]

[Blog]

Redefined “local utility function” of subset S of a single SGD mintbatch:
U®(S; 200 .= ¢(@41(S), 20) — 2w, 202D

Model updated only using Model at SGD step t
data from S

We41(8) = wp — Y, e g VE(we, 2)

J

Redefined “global utility function” of subset S over the entire SGD run:

U(S) =312 UD(S)

S eMnibach
-
SElCE a2 2

e e

Update
Lo

All Data Points’ Data Shapley wm:f

ing-based Data Shapl In-Run Data Shapley (this work)

o D &
% Model (Checkpoint) Training Data Validation Data & Shapley Calculator

Wang, Jiachen T., et al. "Data Shapley in One Training Run." The Thirteenth International Conference on Learning Representations. [Paper]
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https://openreview.net/forum?id=HD6bWcj87Y
https://jiachen-t-wang.github.io/data-shapley.github.io/

4) Applications of Data Importance
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Applications of Data Importance

Influence Function for Explaining Fairness Errors

Challenge Data points ordered by importance

Data attribution gives us an ordered list of data points that

impact model quality, but it does not explain what makes age education marital gender _income ) o .

these data points impactful. 30 Bachelors Never-married ... Male <50K Lattice-based search identifies predicates that
53 1lth  Never-married ... Male <50K select the most impactful training data subsets
28 Bachelors Married-civ-spouse ... Female <50K

If we group important data points based on common 3T Misiers Macied-civspouse . Fomals’ SROK

predicates, we can derive more powerful conclusions about U=115 Cooiid B o i1

factors that cause models to underperform. [Jgender=Male]| Imarital:MarrEi|ed—| '

Approach U=0p [l

hours< 40

(gender=Male) A
(marital=Married)

) A

First, use influence functions to compute data importance (marital=Married)
with respect to fairness metrics. Second, use lattice-based AT T
search to identify combinations of predicates that define Qi (gender=Male) A B (gender=Male) 4

data subsets that are both small and impactful. Ema"tax_unmamed) “f m(maml_Mamed) 4

(hours < 40) (hours < 40)
= Ciystu gy gaas i
Combinations of predicates that explain model behavior

@ (chdcr = cha]e) A (Rcla(iuuship = Not nmrrivd) A (Edm'uliou = Assu('inlo-\'m)

@ (Gendur = Male) A (Rcluliomhip o Spous() A Olom's < -1[)) A (\V&Jl’k('luﬁ.\‘ == Fﬁlvrul«gm)

@ (Gendur = Male) A (Edm‘miun = me—a‘('hool)

[Zhu SIGMOD ‘22]
30

Pradhan, Romila, et al. "Interpretable data-based explanations for fairness debugging." Proceedings of the 2022 international conference on
management of data. 2022. [Paper]



https://dl.acm.org/doi/abs/10.1145/3514221.3517886

Applications of Data Importance

Debugging the LLM Retrieval Corpus

Challenge

Retrieval augmented generation (RAG) is a widely used
technique for providing pre-trained large language models
(LLMs) with task-specific context. Data errors in the
retrieval corpus have a negative impact on model quality.

The role of a retrieval corpus to an LLM is similar to the
role of a training dataset to a classical ML model.

Approach

Define a data attribution function that will compute the
importance of data points in the retrieval corpus. Use this
to identify and debug data errors.

Improving Retrieval-Augmented Large Language
Models via Data Importance Learning

(ha gl Shaopeng Wei
Ce Zhang!
Apple

polc

23

Abstract

[Lyu arXiv ‘23]

[cs.LG] 6 Jul 20;

(2023). [Paper] [Code

Retrieval-Augmented Model

e PRI

[ Retriever me Generator fgen Iﬁ' ]

w810

Outputs

N
E S data — Data Importance] Inference %%

Evaluator Q

Retrieval Corpus Dret

U(fgena freta Dvala Dr-el) = Z U (fyen(mia f'ret (rh D'ret)))

Validation Set Dy

2; CDyat
Ulwy,- -+ war) i= Z U(S) H wj H(l—wi)
SCDret d;€S  digS
P[S]
DATASET GPT-JT GPT-JT (6B) W/ RETRIVAL GPT-3.5
) (6B) (175B)
VANILLA  +LOO  +REWEIGHT  +PRUNE |
Buy 0.102 0.789 0.808 0.815 0.813 0.764
RESTAURANT 0.030 0.746 0.756 0.760 0.761 0.463

Lyu, Xiaozhong, et al. "Improving retrieval-augmented large language models via data importance learning." arXiv preprint arXiv:2307.08027
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https://arxiv.org/abs/2307.03027
https://github.com/amsterdata/ragbooster

Key Takeaways of Part I

Data attribution is a useful powerful framework for
approaching the problem of data error detection.

There are many existing data attribution methods
with various strengths and shortcomings.

The most powerful methods face scalability issues
that have been tackled by existing research with
many opportunities for future improvements.
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Part 11:
Data Debugging in ML Pipelines

Sebastian Schelter
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Gap between Attribution Methods and ML Pipelines

Data errors originate here

Clinical
Patient Data
Filter Missing Compute
Values Survival Time
Pathology
Reports
Automatic Information
— —_|— Text Extraction
p— Extraction using an LLM
Histology
Images
[ o
22
- Extraction of Artifact
Image Patches Removal

Test
Data

Features  Labels

Data errors are observed here

Quality

AUROC 0.87
fl score

( Correctness Metric

Evaluation

Data Attribution Methods Presented
in Part I only Focus on This Part

Training
Data

Features  Labels

Prediction

<>
L

Predictor

Predicted Survival|
Probability

redictive parit

Fairness Metric
equalized odds 0.84

Calibrated Survival

Risk

Prediction

l

Calibration <>
Model Fitting "

Challenge: How should we debug ML pipelines?

Risk
Calibrator
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Libraries and Systems for ML Pipelines

Scikit-Learn
Highlights (Step 2)
o Among the most popular data science Python libraries — l ﬂ Ze::ne'predm(m)
e Has implementations of many machine learning models, as :
well as feature encoding operators a Pipeline N\
o Introduced the estimator/transformer abstraction for A Scalng exanstomn(..)

composing complex, nested pipelines

Dimensionality
reduction

. . Cfitd.) &
o  Transformer: tuple-at-a time transformation transforn(..)

. . . Learning algorithm .transform(...)
o  Estimator: create a data-specific transformer via 180

a global aggregation over the data

Predictive model
Class labels
k .predict(...)

Selkit-learn: Machine Learning In Python

[Pedregosa JMLR ‘11]

Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830. [Paper] 36
[Website] [Code]



https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://scikit-learn.org/stable/index.html
https://github.com/scikit-learn/scikit-learn
https://vitalflux.com/sklearn-machine-learning-pipeline-python-example/

Libraries and Systems for ML Pipelines

TenSOI'ﬂOW EXtended (TF X) TensorFIt.':l Extended

Highlights
e End-to-end platform for production ML pipelines e

e Built on TensorFlow and optimized for scalability, B— TensorFlow

Validator Extended

strong emphasis on model validation and

monitoring ¢ Ex e |

o Includes reusable components for pipelines, inspired by ~— “** L m e O S e
estimator/transformer paradigm A
. S Validator Tensonriow

e Apache Beam for dataflow operations,

Tensorflow for numerical operations

METADATA STORE

ped Dt Scince Paper KDD'17. August 117 2017 Hal, N5, Consds TFEX CONFIG

TFX: A TensorFlow-Based Production-Scale Machine Learning
Platform

Source: https:/www.tensorflow.org/tfx/guide

[Baylor SIGKDD ‘17] 37
Baylor, Denis, et al. "Tfx: A tensorflow-based production-scale machine learning platform." Proceedings of the 28rd ACM SIGKDD international
conference on knowledge discovery and data mining. 2017. [Paper] [Website] [Code]



https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://tensorflow.github.io/tfx/
https://github.com/tensorflow/tfx
https://www.tensorflow.org/tfx/guide

Libraries and Systems for ML Pipelines

Spark MLIib

Highlights
e Built on top of Apache Spark

o Includes implementations for classification,
regression, clustering, collaborative filtering,
and dimensionality reduction

e Works natively with Spark DataFrames,

SQL, and streaming data

e Adoption of estimator/transformer paradigm
from scikit-learn

[Meng JMLR ‘16]

MLIib

.‘Spcnr"\Z

Data Files

/i

Spcwr‘ﬁ!(\Z
| o | e,

/ (Chi-Square Tests)

Spoﬂ%{

MLlib

The Machine Learning Library

Hypothesis Testing

Split Input Data into

Train & Test Sets

ML Pipeline - Classifier 1 (Eg: Random Forests)

v andom
(CN»SqI-u) Moddl

ML Pipeline - Classifier 2 (Eg: Logistic

Feature istic
Vector H Selector H R:g;don
o (Ch-Square) Model

Model Vaidation & Mose T
Selection » vEod
Cross Validation

ML Pipeiine - Classifier n

Feaure Other
s Classfication
(CNSQ\.I‘) Model

Source: https:/www.qubole.com/developers/spark-getting-started-guide/workflow
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Meng, Xiangrui, et al. "Mllib: Machine learning in apache spark." Journal of Machine Learning Research 17.34 (2016): 1-7. [Paper] [Website] [Code]



https://www.jmlr.org/papers/v17/15-237.html
https://spark.apache.org/mllib/
https://github.com/apache/spark/tree/master/mllib
https://www.qubole.com/developers/spark-getting-started-guide/workflow

Libraries and Systems for ML Pipelines

Apache SystemDS Apache

SystemDS ™

Command Python, R, and Java
H- hl. ht O APLs C Line ) ( JMLe ) @L Co‘“e@ Language Bindings )

© Compiler (Porcn g oo e ) Optimizations
e Designed for scalable and efficient execution on both single-node and pon | (_Highlevel Oporatos (HOP)_ ). s spericn
distributed environments R (i ewmGoR) )
© Contro Program © (oprmmmegnne) (o)
o Offers a high-level scripting language for expressing ML algorithms Crmmater) (o | (" (o) () (e
and workflows with a declarative R-like language E “““g;f;:j:f“‘“
e Performs cost-based optimization and automatic operator “ [mﬂﬂ“ i )
selection for efficient execution across different hardware endpoints
[ ]

Optimised feature encoders based on estimator/transformer paradigm User Seript Builtin Functions

m_1m = function(...) {
if( ncol(X) > 1024 )
m_steplm = function(...) { B = ImCG(X, Y, ...)
while( continue ) { else
parfor( i in 1:n ) { B = 1mDS(X, y, ...)
if( !fixed[1,i] ) {
Xi = cbind(Xg, X[,i]) n <
BLA] = In(Xi, ¥, .r .} ML Algorithms
m_1mDS = function(...) {

X = read( ‘features.csv’)
Y = read(‘labels.csv’)
[B,S] = steplm(X, Y,

icpt=0, reg=0.001)
write(B, ‘model.txt’)

UPLIFT: Parallelization Strategies for Feature Transformations

1}
# add best to Xg (AIC)

1= matrix(reg,ncol(X),1)
in Machine Learning Workloads A = £(X) %*% X + diag(l)
A T Feature Linear Algebra| P = t(X) %% y
o Technlogy Technlogy Techndogy
—— Selection Programs|_beta = solve(A, b) ...}

[Boehm CIDR ‘20]

Boehm, Matthias, et al. "SystemDS: A Declarative Machine Learning System for the End-to-End Data Science Lifecycle." 10th Conference on
MLIb: Machine Loarning in Apache Spark Innovative Data Systems Research. 2020. [Paper]| [Website] [Code]

[Phani VLDB ‘20]

Phani, Arnab, et al. “UPLIFT: parallelization strategies for feature transformations in machine learning workloads.” Proceedings of the VLDB 39
Endowment, Volume 15, Issue 11, 2020. [Paper]



https://phaniarnab.github.io/assets/papers/cidr2020.pdf
https://systemds.apache.org/
https://github.com/apache/systemds
https://dl.acm.org/doi/abs/10.14778/3551793.3551842

Libraries and Systems for ML Pipelines

ML Pipelines in the Cloud

20) METAFLOW

Netflix Metaflow

[Website] [Documentation]

Highlights

e Notebook based
development
environment

e Storing and tracking of
code, data and models

e Scaling from local
execution to the cloud

Amazon SageMaker

Amazon SageMaker
Pipelines

[Website] [Documentation]

Highlights

e Define, automate, and
manage end-to-end ML
workflows

o Automatically tracks
pipeline artifacts

o Leverages AWS Cloud
infrastructure

&

Azure Machine Learning

Azure Machine
Learning Pipelines

[Website] [Documentation]

Highlights
e Orchestration of ML
workflows with reusable,

modular pipeline
components

e lersioning, monitoring,
and CI/CD integration

\

Vertex.ai

Vertex Al Pipelines

[Website] [Documentation]

Highlights

Connects with Vertex AI
services

Tracks pipeline steps,
metadata, and artifacts

Orchestrates ML

workflows on Google
Cloud
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https://metaflow.org/
https://docs.metaflow.org/
https://aws.amazon.com/sagemaker-ai/pipelines/
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines.html
https://azure.microsoft.com/en-us/products/machine-learning
https://learn.microsoft.com/en-us/azure/machine-learning/concept-ml-pipelines
https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai/docs

3) Characteristics of Real World ML Pipelines

4) Methods for Debugging ML Pipelines
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Characteristics of Real World ML Pipelines

Study of Pipelines at Google

Highlights

Study of 3000 production pipelines with over 450K models trained
over a 4 month period

About half the pipelines studied used data- and model-validation operators

Input data typically has up to 100 features, but can have over 10K in
extreme cases

537% of features were categorical, often with very large domains (averaging
over 10M unique values)

Training accounts for only 20/ of the total runtime cost, over 30%
is for model validation and 20%% for data ingestion

About 1/4 of model training runs results in model deployment
Deep learning models account for 60’ of pipelines

SIGMOD 21 e 25-25 2021, Ve Even, Chirs

Production Machine Learning Pipelines:
o "

ical Analysis and Opti pp

[Xin SIGMOD ‘21]

international conference on management of data. 2021. [Paper]

7
]
£

Data Ingestion

Data Analysis and Validation
Data Pre-processing

Training

Model Analysis and Valldation
Model Deployment

0%

5%

T
10%

15%

20% 25% 30% 35%

Figure 7: Compute cost of different operators.

— Mean () =36.6
— Median (m) =21.5 108

Frequency

10!

0 20 40 60 8 100 120
Lifespan of a pipeline (days)

0

— Mean (i) =7.2
Median (m) =1.0

600

800

Trainer executions per day per pipeline

— Mean (1) =551
— Median (m) = 30.0

Frequency

10°
Numbers of features among sampled pipelines

() Distribution of the number of features.

(a) Distribution of pipeline span. (b) Distribution of trained models per day.
DNN g
DNN-Linear
Linear
Tree-based
other
b T T T T T T
0% 10% 20% 30% 40% 50% 60%

Figure 5: Percentage of Trainer runs with each model type

DNN

DNN-Linear

Linear

Tree-based

other

(f) Model type vs. likelihood of pushes.

Xin, Doris, et al. "Production machine learning pipelines: Empirical analysis and optimization opportunities." Proceedings of the 2021 42


https://dl.acm.org/doi/abs/10.1145/3448016.3457566

Dimension Metric GH17 GH1Y GH20

Characteristics of Real World ML Pipelines Notebooks  Total 123M  46M  87M
Deduped 66.0%  65.5%  65.7%

. . N Linear 264%  29.1%  303%

Study of Pipelines at Microsoft
y p Languages  Python 81.7% 91.7% 91.1%

Other 18.3% 8.3% 8.9%

. . Cells Total 34.6M  143.1M  261.2M
nghllghts Code Cells  Total 64.5%  664%  66.9%
H . Deduped 41.0%  38.6%  38.5%

o Study of over 8M public Jupyter n.oteb.ook‘s on GitHub (from 2017, e i k. i
2019, and 2020), and 2M enterprise pipelines developed with Completely Lincar  68.3%  76.1%  75.6%
ML.NET Users Total 100K 400K 697K

@

e Python is emerging as the de-facto standard language for data
science (81/% of notebooks in 2017 and 91% in 2020) 52

o Around 80 cells were linear (no conditional statements) and 76% were
completely linear (no conditionals, classes, or functions)

Percentage o
Notebooks (%)
Mow s oo
858888
N s oo

.,
H
Percentage of Notebooks (%)

0

°

e Libraries like numpy, matplotlib, pandas, and scikit-learn are used O S L
very frequen tly (e.g., numpy in >60% OantebOOks) Figure 2: Top-10 used libraries. ~ Figure 3: DL libraries usage percentages.

o Few highly used libraries have significant coverage (e.g., top-10 cover ~40% GH17 GHI19 GH20 ML.NET
of notebooks, top-100 cover ~75%), but there is a long tail #Pipelines  Implicit 164K 415K 14M N/A

o Explicit ML pipelines (defined with sklearn.pipeline) are gaining traction #Distinet Ops fﬂ’igﬁti: e e 2N
but there are still 5 times more implicit pipelines in GitHub notebooks Explicit 584 34K 55K 235K

e There is a large number of distinct operators, and a significant
portion are user-defined (especially in ML.NET and implicit GitHub
pipelines)

oy
E=3
k=3
ke
o
o

e
~
«
o
~
[

Coverage (%)
=3
o
o
Coverage (%)
o
w
o

2
N
[

Data Science Through the Looking Glass: Analysis of

{2
o
=]

Millions of GitHub Notebooks and ML.NET Pipelines 0.00 ! | i
10° 10! 10? 16? 10° 10t 102 10 10* 10° 108
Operators Operators

o
ez

ABSTRACT

[Psallidas SIGMOD Record ‘22]
Psallidas, Fotis, et al. "Data science through the looking glass: Analysis of millions of github notebooks and ml. net pipelines." ACM SIGMOD 43
Record 51.2 (2022): 30-37. [Paper]



https://pages.cs.wisc.edu/~wentaowu/papers/sigmodr22-dsonds.pdf

Observations

e No universal way to express ML pipelines, design
often prioritises flexibility and ease-of-use

e Many pipelines combine relational / dataflow
operators with ML-specific operators based on
estimator/transformer abstraction

e Pipelines often executed via multiple runtimes
e Lack of algebraic operator semantics

e Lack of fine-grained data provenance
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Methods for Debugging ML Pipelines

How should we reason about pipelines?

Training Trained Predictive Quality Metric
Source Data
Data Model Query Result Results
Cancer Death Rate
BRCA 100/0 Correctness Metric
. - SKCM 2% - Features  Labels accuracy 0.87
invalid biased Predictive l score
; . ) ) <> Ve
Diagnosis_ Race S Preprocessing ,II,XI odel Query gy == Fairness Metric
aining Pr ? Evaluation !
OEERRTTS equalized odds | 0.84
o joining model selection o calibration predictive parity
o augmentation architecture search e aggregation Stability Metric
o filtering hyperparameter tuning o dictionary lookup
o imputation ... —’lentropy | 0.16 |
missing wrong o normalization
o Predictive
Data Errors Query Result
Errors

‘What caused this data error?

How does it propagate through the pipeline?

What is the impact of this tuple on the error?
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Methods for Debugging ML Pipelines

Modeling ML Pipelines with “Logical Query Plans”

Challenge

Understanding of the semantics of operations and
the flow of data required to reason about ML
pipelines

Many common pipeline abstractions offer declarative
operations, enables the extraction and definition of
“logical query plans” modeling their operations

Approach

Instrument functions of Python data science
libraries to extract query plan, enable annotation
propagation through operators. Apply rule-based
approaches to determine if an error has occurred.

THEVLDS o 02 3111011126
g diany 0100500721 0726

SPECIAL ISSUE PAPER

ile

Data distribution debugging in machine learning pipelines
Stefan Grfberger - Paul Groth - ulla Stoyancvich - Sebastan Scher!

Rcoved et

e 2022

Rbstract

inpot da

[Grafberger VLDB]J 22]

Potential issues
in preprocessing
pipeline:

Join might
change proportions
of groups in data

Column ‘age_group’
projected out, but
required for faimess

Selection might
change proportions
of groups in data

Imputation might
change proportions
of groups in data

‘race’ as a feature
might be illegal!
6—
Embedding vectors
may not be available
for rare names!

\I

Python script for preprocessing, written exclusively Corre:

with native pandas and sklearn constructs

sponding dataflow DAG for

instrumentation, extracted by mlinspect

# load input data sources, join to single table

( Data Source ]

( Data Source |

patients = pandas.read csv(..)
histories = pandas.read_csv(..)
data = pandas.merge([patients, histories], on=['ssn’]}

# compute mean complications per age group, append as column
complications = data.groupby('age group')
.agg(mean_complications=("'complications’, 'mean’))
data = data.merge(complications, on=['age group'])
# Target variable: people with frequent complications
data['label'] = data['complications'] >
1.2 * data['mean_complications’]

Declarative inspection

PipelineInspector

# Project data to subset of attributes, filter by counties .on_pipeline( health.py')

data = data[['smoker®, 'last name', ‘county’,
‘num_children', 'race', 'income', ‘label']] l:
data = data[data[ 'county'].isin(counties of interest)]

# Define a nested feature encoding pipeline for the data

.no_bias introduced for(
[‘age group', 'race'l)
.no_illegal features()
.no_missing_embeddings()
wverify()

of preprocessing pipeline

Join
on ssn

Aggregate
group by age_group

Join on age_group

I

Project label

Project
smoker, lastname, county,
n_children, race, income, label

S

impute_and_encode = sklearn.Pipeline([
(sklearn.SimpleImputer(strategy='most frequent')),
(sklearn.OneHotEncoder())])

featurisation = sklearn.ColumnTransformer(transformers=(

(impute_and_encode, ['smoker', ‘county', ‘race']),
(Word2VecTransformer(), 'last name')
(sklearn.StandardScaler(), ['num_children’, 'income']])

# Define the training pipeline for the model
neural net = sklearn.KerasClassifier(build fn=create model())
pipeline = sklearn.Pipeline([

('features', featurisation),

('learning_algorithm', neural_net)])

# Train-test split, model training and evaluation
train data, test data = train test split(data)
model = pipeline.fit(train_data, train_data.label)
print(model.score(test data, test data.label))

Neural Network

47

Grafberger, Stefan, et al. "Data distribution debugging in machine learning pipelines." The VLDB Journal 81.5 (2022): 1103-1126. [Paper] [Code]


https://stefan-grafberger.com/mlinspect-journal.pdf
https://github.com/stefan-grafberger/mlinspect

Methods for Debugging ML Pipelines
Leveraging the Provenance Semiring Framework

Highlights

e Theoretical framework analyzing the relationship between input and output tuples of relational
queries

e Allows us to determine the presence of an output tuple as a function of the presence of the
input tuples

e Easy to adapt for ML pipelines once logical query plan with “relational-like” operations is known

Application to an Example Pipeline

Provenance  Cancer Death Rate

BRCA| 10% Provenance  Death Rate Diagnosis Race Sex Age Alive Provenance  Death Rate Diagnosis Race Sex Age Alive
SKCX| 2% 10% |BRCA | other | f [18 10% |BRCA| other | f [18 P Diagnosis
| Join 9% |SKCM| black |m|26] [ yes | NA 2% | SKCM] black |m|26] | yes | Dsl‘;{fgzt __- BRCA
Provenance Diagnosis Race Sex Age  Alive 2% |SKCM| white [m|38 Filter 2% |SKCM| white [m|38 D SKCM
BRCA | other | f [18 n/a_| CRC | n/a [f[65
SKCM | black |[m|26] | yes
SKCM | white [m|38| | no
CRC | n/a | f|65
® Provenance Semirings

Todd J. Green Grigoris Karvounarakis. Val Tannen
tigreen@x o ed e

Department o Gomputerand Information Scienca
Univerly o Panngyvana
Phiadolohia, A 19104, USA

[Green SIGMOD ‘07]

Green, Todd J., Grigoris Karvounarakis, and Val Tannen. "Provenance semirings." Proceedings of the twenty-sixth ACM 48
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 2007. [Paper]



https://dl.acm.org/doi/abs/10.1145/1265530.1265535

Methods for Debugging ML Pipelines

Debugging Preprocessing Pipelines with Datascope

[Attribution Function: Shapley Value]

Challenge

KNN Proxy methods not directly applicable to arbitrary
pipelines. Presence of a single source data point does not map
directly to a single data point fed to the model.

Observe three canonical types of pipelines based on shape
of produced provenance polynomials. Possible to develop
efficient PTIME algorithms for computing the Shapley value for
them.

Approach

Compile provenance polynomials to Additive Decision
Diagrams and use them to compute Shapley values in PTIME.

(a) Map pipeline

Ao f(Dyr)

>

VoY Yoy v W

(d) Distribution of canonical pipelines

B Purely Canonical
B Approximately Canonical

Other
8]
6

.
9
Pipeline Size

Number of Pipelines
@
=

9

12 15 18

(a) ADD

0.7

Accuracy
o
o

o
8]

0% 50% 100%
Portion of Labels Examined

3
po Ok l 611.2
ayy - az;y | Ao f(Dur) 2 291.23
— ai2 a1 ,@ = 102
ay,3 - az,2 g 55.11
87022 | 5 31.07
DATA DEBUGGING WITH SHAPLEY IMPORTANCE OVER £
MACHINE LEARNING PIPELINES o 10
Bojan Kark'*,| Dm:'l‘):z‘ \l;n:; Inttr:uldl’..\(hmh.n Schelter*, Wentao W', Ce Zhang” 2
“bkarlasngh darvard adu T +1.52
[Karlas ICLR ‘24] 49
Karlas, Bojan, et al. "Data Debugging with Shapley Importance over Machine Learning Pipelines." The Twelfth International Conference on

Learning Representations. 2024. [Paper] [Website] [Code]


https://openreview.net/forum?id=qxGXjWxabq
http://ease.ml/datascope
https://github.com/easeml/datascope

Methods for Debugging ML Pipelines

Debugging Predictive Queries with Rain

[Attribution Function: Influence]

Challenge
Model inference ofien part of a larger predictive query.
Influence-based attribution methods must account for structure Q T
of query. b
fq 7y SELECT COUNT(*) \
FROM Users U JOIN Logins L M, -0 o
ON U.ID = L.ID

, . ' ' WHERE L.active_last_month AND — f—— ——

Provenance polynomials for tracking lineage starting from PR U ‘ Weeks

training tuples all the way to predictive query outputs
allows us to make the entire expression differentiable.

Approach

User complaints on query outputs (e.g. what-if-queries) used to
identify errors. Make the entire query differentiable using
provenance polynomials and run the influence framework to
identify errors in the training dataset.

Resere 15 Machin Lsening fr Clein, teation,and Sesch SIGMOD 2, Jane 14-15, 260, Ponland,OR, USA

Complaint-driven Training Data Debugging
for Query 2.0

Lampros Flokas
Columbia Uriversty

[Wu SIGMOD ‘20]

Wu, Weiyuan, et al. "Complaint-driven training data debugging for query 2.0." Proceedings of the 2020 ACM SIGMOD International Conference 50
on Management of Data. 2020. [Paper



https://www2.cs.sfu.ca/~jnwang/papers/sigmod2020-rain-full-version.pdf

it

Methods for Debugging ML Pipelines

ArgusEyes - Continuous Integration for ML Pipelines

Challenge

ML systems lack sophisticated testing infrastructure
developed for classical sofiware engineering. Many data-related
problems only become apparent in production.

Logical query plans for ML pipelines combined with data
debugging techniques enable ML-specific CI infrastructure.

Approach

Instrument, execute and screen ML pipelines for declaratively
specified pipeline issues, and analyze data artifacts and their
provenance to catch potential problems early before deployment
to production.

Proactively Screening Machine Learning Pipelines
with ARGUSEYES

ABSTRACT

[Schelter SIGMOD Demo ‘23]

““““““““““ Conference on Management of Data (demo). 2023. [Paper

‘The data scientist

Github Repository

|:;| pandas

A
A
@l

Keras

triggered by
code commit

020
O
GitHub Actions

Data Leakage?
Fairness Violation?

Label Errors?
ny-pipeline.py

pipeline: my-pipeline.py

template: classification

detect_issues:

- issue: label errors
max_fraction: 0.03

- issue: data_leakage

screen-my-pipeline.yaml

[t

) GitHub miflow

Schelter, et al.: “Proactively Screening Machine Learning Pipelines with ArgusEyes.” Proceedings of the 2028 ACM SIGMOD International
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Key Takeaways of Part II

e Attribution methods presented in Part I assume
models are trained with source data.

e ML pipelines are complex and present many
opportunities for methods development.

e Logical query plans combined with data
provenance offer a powerful framework for
analyzing ML pipelines.
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Part I1I:
Learning from Uncertain and Incomplete Data

Babak Salimi
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The Standard ML Pipeline

Input Data gg) DataCleaning @) Model = Inference

ID Age  Income ..  Loan ° o Loan Denied:  Loan Approved:
T 25 ok = ® ® High Risk Low Risk
2 NULL 60K 8K . . ‘ Al' B b
3 35 NULL [10K, 12K] ' . 1ce '?
& o
PN dh

), Common Assumption: once we “clean” the data, the pipeline consumes accurate and
unbiased inputs.

X Reality: cleaning/pre-processing yields one reconstruction, driven by heuristic choices &
domain assumptions — it can embed hidden bias and hide genuine uncertainty.

EJ Key insight for Part III: even after best-effort cleaning, real-world data remains incomplete and
uncertain. Our models—and the theory behind them—must make that uncertainty explicit

rather than ignore it.
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Why “Fixing” Data Errors Is Impossible in Principle

Missing values (M 5/ &)

Irrecoverable uncertainty: any imputation is just a guess; the true value is
unobservable.

Unverifiable assumption: “missing at random,” parametric model of the data, etc.

[Pearl & Mohan, AAAI 2014], [Mohan, Pearl & Tian, NeurIPS 2013]

Measurement / annotation bias (@ sentiment, 5 diagnoses)

Systematic distortion: recorded values can be consistently wrong.
Unverifiable assumption: symmetric, independent label-noise model.

[Pearl, UAI 2010], [Zhang & Yu, IJCAI 2015]
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Why “Fixing” Data Errors Is Impossible in Principle

Selection bias & missing counterfactuals (/\ rejected-loan applicants, excluded
patients)

Unknown outcomes: whole sub-populations are never seen.

Finite-sample limits: re-weighting needs the true selection mechanism—which we

canttest. [Bareinboim, Tian & Pearl, AAAI 2014] [Cortes et al., ALT2008],
[Heckman, Econometrica 1979]

Schema / integration mismatch (/\ inconsistent units, Q fuzzy entity resolution)
Ambiguous merges: no ground-truth correspondences.

Pre-processing bias: heuristics distort original distributions; matching is
probabilistic.

[Dong, Halevy & Madhavan, VLDB 2009],
[Getoor & Machanavajjhala, ACM 2012]
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Challenges with Traditional Data Pipelines

Input Data @) Data Cleaning m) Model = Inference
Loan Denied: Loan Approved:

ID Age Income Loan I ngh RlSk Low RlSk
1 25 50K 5K — ® 4 o
2 NULL 60K ... 8K ® N o Alice Bob
3 35 NULL ... [10K, 12K] ® @ @
ah dh

" Generalization Failure — Models trained on “repaired” data collapse under real-world
shifts.

X High-Stakes Mis-decisions — Hidden bias drives flawed credit, medical, and justice
outcomes.

I\ Broken Uncertainty — Bayesian & conformal intervals lose calibration when data are

incomplete. o7



Learning from Incomplete Databases

Perfect cleaning is a myth. Even with best-effort repairs, many plausible datasets remain

Hidden uncertainty = hidden risk. A model trained on one arbitrary repair can look
accurate yet flip decisions on another equally valid repair.

Needed: an explicit uncertainty framework.

e capture what is unknown in the data, A——;

. . - f== h 11l \/
e propagate that uncertainty through training, | r? sy 3 oE -
e surface it at inference time. ] }_l' ok @

Practical pay-off.

e Robustness check: see when all admissible models agree (safe to act).
e Guardrail: abstain or seek more data when predictions diverge.
Targeted cleaning: focus effort on the cells that actually shrink uncertainty.
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Incomplete Databases

Formalism from databases & Al to handle uncertainty by modeling all
plausible data interpretations. (Rooted in modal logic & philosophy)

Dataset with Quality Issues

ID Age Income Loan
1 25 50K 5K
2 NULL 60K 8K
3 35 NULL [10K, 12K]

Q : What is the total income?



Possible Worlds Semantics

Dataset with Quality Issues

Inference:

ID Age Income Loan

1 25 50K 5K

2 NULL 60K 8K

3 35 NULL [10K, 12K]

Q : What is the total income?

ID Age Income Loan
1 25 50K 5K
2 30 60K 8K
3 35 55K 7K
ID Age Income Loan
1 25 50K 5K
2 35 60K 8K
3 35 60K 8K
ID Age Income Loan
1 25 50K 5K
2 35 60K 8K
3 35 60K 8K

— Q1)

— QD7)

— Q(Ds) =

6k

9k

5k

All repairs agree — Certain answer
Range <t — Robust interval (e.g., [5 k — 6 k])
Range > 1 — Uncertain — warn / seek more cleaning

Range consistent
answers:

[0.5 - 0.3]

Min/Max query result acrossall
possible database repairs.



Representing Uncertainty in Databases

C-Tables/M-Tables: Compactly represent multiple possible
worlds using variables and conditions.

[Imielinski & Lipski, JACM 1984], [Sundarmurthy et al., ICDT 2017]

Probabilistic Databases: Assign probabilities to possible
worlds, quantitying their likelihood.

[Suciu, Olteanu, Ré & Koch, Book 2022]

Answering queries across possible worlds is
computationally expensive, often NP-hard or ,..»EA..D
exponential.
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M L from Inference

Possible Rep airs e Allmodels (A )concur — Certain prediction (e.g., payout = 3 K)
e disagree — Range prediction (e.g., payout € [2 K, 4 K]) "
NP-I:ARD

ID Age Income Loan
*
125 50K ... 5K hp,
. . 2 30 60K .. 8K %
Dataset with Quality Issues — — & 2 3K
3 35 55K oK
ID Age Income Loan
1 25 50K 5K
2 NULL 60K 8K ID Age Income Loan
3 35 NULL . [10K, 12K] 1 25 50K . 5K h;‘)
2
2 s ek B 2K
 —  —
3 35 60K .. 8K
Machine-learning analogue of
Consistent Query Answering: cee
swap the SQL query Q for a training ID Age Income ... Loan
rougpe T—e.g., graobent descent,' 1 o oK -
decision-tree induction, SVM fitting.
2 35 60K .. 8K

3 35 60K 8K




Learning from Possible Repairs

KNN Classifiers over Incomplete Information

[Approach: “Certain-kNN” — returns a label only when it is guaranteed across all completions of the missing values]

e  Missing attributes can flip k-NN labels; intersecting votes across all
imputations yields a guaranteed label.

e  Model each incomplete record as a value set (hyper-rectangle).

e  Two polynomial-time tests (SS, MM) decide if a test point is
“certain” without enumerating possible worlds.

e 100 % precision on “certain” points — i.e., points whose prediction
is certain across every imputation.

e CPClean add-on ranks the missing cells whose repair would turn

“uncertain” points into certain ones, guiding targeted data cleaning.

Shortcomings:

e Guarantees apply only to numeric-feature k-NN

Nearest Neighbor Classifiers over Incomplete Information:
From Certain Answers to Certain Predictions

bojan

[Karlas VLDB '20]

VLDB Endowment 14.3 (2020): 255-267. [Paper]

Gap Closed

100%

50%

0%

e KNN classification over a regular training dataset

testexample ¢ [ |7 -7

Y X TJEI:' ‘
D

s oy
e
e

similarity
values

o KNN classification over a training dataset
with incomplete information

testexample ¢[ | {7 ‘7
s

111

1“
T2,

1;1

-e—e- CPClean
-A-A- Random

0% 50% 100%
Examples Cleaned

100%

50%

0%
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[Kernel]

j one

possible
world

100%

50%

Gap Closed

0%

N
N
Y

sudsigf
?2 52,2}
.y

similarity
candidates

A

(el
-o—e CPClean
-A-A- Random

0% 50% 100%
Examples Cleaned

100%

50%

0%

Validation Examples CP'ed

Karlas, Bojan, et al. "Nearest neighbor classifiers over incomplete information: from certain answers to certain predictions.” Proceedings of the
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Learning from Possible Repairs

The Dataset Multiplicity Problem

[Approach: bound model risk across every
dataset consistent with the errors]

The Dataset Multiplicity Problem: How Unreliable Data Impacts

Predictions
Anna Meyer Aws Albarghouthi Loris D'Antoni
i awsacs wisc.cd loris@es wisc.cdu
Univrsity of Wisconsin - Madison  University o Wisconsia
Ma Madison, USA
ABSTRACT 1 INTRODUCTION

~Madison  University of Wisconsin - Madison
Ma

data coll da

s or feat

ol features. exactly
impacts of dataset mulipliity for a specific model  imbued in the data collction and postprocessing 2, 42, 4. Addi
Tional

[Meyer FAccT 23]

samples are affcted, and whether diflrent demographic groups

! R
L 08] N
®
30.6
E
30.4
™ 0.2 @

| | O | 1
00 2 4 6 8 10 12

Max. label error (%) Max. label error (%)

e Introduces a risk interval: the tightest possible
lower/upper bound on test error that any
admissible dataset can induce for a fixed linear
model.

Approach:

e Derive closed-form formulas for the worst- and
best-case hinge / logistic loss of any linear
classifier under those rules, avoiding enumeration.

Benefits:

e Gives practitioners a numeric certificate of how
much reported accuracy can deteriorate.

Shortcomings:

e Theory currently limited to linear models and
label-noise rules; deep nets need looser convex
relaxations.

Meyer, A. P.; Albarghouthi, A.; D’Antoni, L. “The Dataset Multiplicity Problem: How Unreliable Data Impacts Predictions. [Paper]


https://pages.cs.wisc.edu/~aws/papers/facct23.pdf

Learning from Possible Repairs

Certain & Approximately Certain Models
for Statistical Learning °

[Approach: Fast “certainty test” that lets you o
skip imputation whenever the missing cells
don’t affect the optimum]

Humidity (%)
@

Temperature (F)

g

(a) Data cleaning is not needed (b) Data cleaning is needed °

Certain and Approximately Certain Models for Statistical
Learning

Not every example with missing values
requires cleaning.

If the missing cells lie in directions that do
not change the model’s optimum, we can
train directly on the incomplete
data—with full guarantee.

Approach:

Provide fast algebraic tests (no world
enumeration) that decide certainty for linear
regression, linear SVM, and two kernel SVMs.
When tests pass — output the certain model
(exactly optimal).

When tests fail — compute an e-certain model
whose loss is within ¢ of the global optimum.

- \
Temperature (F) Benefits:

Skips imputation for datasets that pass the test,
saving cleaning effort and avoiding imputation
bias.

Same code works across several common
model families.

g e N Shortcomings:

[Zhen SIGMOD’24]

Certainty rarely holds under heavy
missingness.

Guarantees limited to the studied linear &
kernel models; deep nets need other methods.

Zhen, C. et al. “Certain and Approximately Certain Models for Statistical Learning. [Paper
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Learning from Possible Repairs

Certifying Robustness to Programmable

Data Bias in Decision Trees

[Approach — ProgBiasCert: encode “tree +

- = = White men

Certifiable robustness (%)

= = = White women
——— Black men
~———— Black women

bias program” in SMT to prove the label

never flips]

Training data Decision tree learned from training data
Tex
score <3
e O @OOO@OO0 @O
sore 0 1 2 3 5 6 7 8 9
label x x x x ¥ ¥ ¥ x ¥  Yelo! Yo
56789
VY Y xy
Note that no element of training data has score =4 x with prob. 1 v with prob. 0.8

Certifying Robustness to Programmable Data Bias in
Decision Trees

Anna P. Meyer, Aws Albarghouthi; and Loris D’ Antoni
Dep: ces

Abstract

Datasets can be biased due to societal inequitis,
representation of mir ur goal s t

by

ing that they all produ
e to the interpretable

technig
i of dtaset,ceri-
fying that ach and every dataset produces the same prediction fora specifc test
point.

lteratu app

Abstract decision tree learned from bias model: up to 1
black person may have received a wrong negative label

{score < 3}

true, Sfalse
0000 [ leje] @)
Opl2 3 56789
X X X X VY Y xvy

x with prob. [0.751] v with prob. [0.8,1]

[Meyer NeurIPS'21]
Zhen, C.; Aryal, N.; Termehchy, A.; Chabada, A. S. “Certifying Robustness to Programmable Data Bias in Decision Trees.” [Paper]

0 0.2 04 06 08 1

Ll L
0 0.2 0.4 0.6 0.8

e Treat data bias as a user-written program (e.g.,
age * 2, race swap, income x 0.9-1.1).

e Atree is robust if its prediction is invariant
under all transformations allowed by that
program.

Approach:

e Translate each path of the decision tree and the
bias constraints into a single SMT formula.

Benefits:

e Exact guarantees—no sampling; works with real &
categorical features and generates independently
checkable proofs

Shortcomings:

e Does not yet handle ensembles or probabilistic
bias distributions.
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Learning from Possible Repairs

Consistent Range Approximation for

Fair Predictive Modeling

[Approach: Fair-aware prediction ranges:
bound each score so it stays fair under
every repair of noisy / missing sensitive

attributes

Input Components

Possible Repairs of Dy

( N
ML Model b 38%: Data @H ™ Crime Type | Age | Zip Code | Race | Y | Prediction N
Collection Assault | 26 | 90210 | White | Low Risk | High Risk
Fairness Quer ) § ssault 0 ite | Low Ris} igh Ris|
Query f®  piagram | @ |O —02
. & Robbery | 31 | 60610 | Black | High Risk | High Risk
Biased Data Dp ) ¢
Crime Type | Age |Zip Code | Race | ¥ |Prediction
Assault | 26 | 90210 | White | Low Risk | High Risk Crime Type | Age | ZipCode | Race | Y |Prediction Possible
L Assault | 26 | 90210 |White | Low Risk | High Risk Fairness
J - 0.1
- ~ Burglary | 33 | 90210 | Black | High Risk | High Risk Query
Answers
Range of Accessibility to External Data Sources Aq
No Access: No  Partial: Access to  Sufficient: Access Crime Type | Age | Zip Code | Race Y Prediction
exeynal statisticsabout  to statistics about |$ Assault | 26 | 90210 | White | Low Risk | High Risk
statistics  sensitive attributes sensitive attributes —05
available  and some variables  and all variables Theft 32 | 60610 | Black | Low Risk | High Risk
that affect data that affect data
L selection selection ) J
Consistent Range Approximation for Fair Predictive Modeling
Jiongli Zhu Sainyam Galhotra Nazanin Sabri Babak Salimi
University of California, Cornel ity University of California, ~ University of California,
‘San Diego sg@cs.comelledu San Diego
jiz143@ucsd.edu nsabri@ucsd.edu ‘bsalimi@ucsd.edu
ABSTRACT el deploying these models in the target population may lead
“This anovel framework for crtiying the fairmess 0 Unfair 1,35,
f pre trained on biased data. It draws from query A sigs s is
o suling from training data selction bses
the p (CRA) of fairness i
- in sensitve areas like predictive policing, healthcare, and finance,
,
[Zhu VLDB "23]

Example 1.1. Consider the dataset in Table 1, which represents

Consistent Range of
the fairness query
answer f(Q)

[CLB, f(£2), cuB]

Consistent
Lower Bound

Consistent
Upper Bound

e ORIG-SB % ORIG-NoSB o CORTES e« REZAEI CRAB-SUFF CRAB-NOA  —e— CRAB-NoU
0.30 030 030 030 0.30
* / ot
0.20 0.20 0.20 0.20 0.20
o : ; Jy b {
$ \‘ 1 e
! 0.10 0.10 0.10 y| o0 0.10
* A
— 4
0.00 0.00 0.00 0.00
0.950 0.951 0.952 0.480 0.560 0.640 0.948 0.950 0.952 0.940 0.944

0.00
0.500 0.600 0.700

a) ADULT-G2-S1

b) LAW-G2-S1

0.928 0.936 0.944
c) HMDA-G2-S1

d) ADULT-G2-52

e) LAW-G2-52

e  With selection bias we don’t know the
target-population fairness.
e Treat fairness evaluation as a query over
incomplete data; answer with a range that is
guaranteed to contain the truth.

Approach:

e Derive a closed-form range for fairness
aggregates.

e Train a classifier that minimises risk while keeping
the worst-case value inside the acceptable fairness
range.

Benefits:

e Certifies fairness without unbiased samples; needs
only the biased data + background knowledge.

Shortcomings:

f) HMDA-G2-S2

Relies on correct causal diagram; ranges may
be wide if knowledge is weak.

Consistent Range Approximation for Fair Predictive Modeling. [Paper]
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(a) Robustness verification with uncertain labels (MPG data).

[Approach: Abstract interpretation +
zonotopes: train once on a single convex

polytope that encodes every possible repair

e  Zonotope = all repairs in a compact affine

Araining Data  Possible World 1 e Possible World 2 © Possible Model 1 @ Possible Model 2 Possible Model 1 Predictions form

Age Income Savings :av,=-§%+§xﬁ:e+g.ix:nc‘ R Age Income Savings T — h . . h b
25 50K 5K av. = - * xAge + 0.1xInc. _
- s -i;'m? . raining on the zonotope gives one weight-box
% [ NuL | K oA R T that subsumes every per-repair model.
NULL | NULL | [8K9K] 15 e Income Savings

B | o | K T | ok | 73k |

50 | NULL | [10K.12K] 2800 Approach:

55 75K 9K 0.15 Zorro Prediction Ranges

60 85K 10K 85 - 0.10 c Income []

a “°‘(‘) L (°)'°5 ad oo s e  Map each uncertain record to an affine form;

a, c]
the full dataset becomes one zonotope.
Abstract Abstract

Abstract Learning

Run gradient descent symbolically.
Output is a convex box of model weights; any
concrete repair yields weights inside this box.

Dataset

Benefits:

Learning from Uncertain Data: From Possible Worlds

{0 Possible Models e Guaranteed intervals for weights &

P —— predictions—true model always inside.

"University of Califonia, San Diego  Nanjing Tech University *University of Tllinois, Chicago

Shortcomings:
Abstract
e e e Supports linear models only.

topes, a type of convex polytope, to compactly represent these dataset variations,
enabling the symbolic execution of gradient descent on all possible worlds simul-
taneously. We develop techniques to ensure that this process converges to a fixed
‘point and derive closed-form solutions for this fixed point. Our method provides

ranges. We demonstate the :f'f::lliv:ness of our .W'r’é‘,‘ﬁﬁ'mh theoretical and [Zhu NeurIPS’24<]
iy 1t e s Gaag e o peicion Zhu, J.; Feng, S.; Glavic, B.; Salimi, B. “Learning from Uncertain Data: From Possible Worlds to Possible Models. [Paper]



https://proceedings.neurips.cc/paper_files/paper/2024/file/c17fab1bcef325d0d30989c9bf506c0b-Paper-Conference.pdf

Key Takeaways of Part II1

e Residual data uncertainty is inevitable. Cleaning produces at best one plausible version;
we must reason over the space of possibilities.

e Guarantee — coverage trade-off. Certainty methods (Certain-kINN, CRA, ProgBiasCert)
give perfect precision or fairness—but may abstain widely.

e Targeted cleaning beats blanket imputation. Algorithms like CPClean and OTClean
identify the few cells whose repair actually widens certified coverage.

e Model-side defences matter. Dataset Multiplicity, Certain/Approx-Certain Models, and
Zorro show how to train / audit over the whole uncertainty set—returning intervals,
ensembles, or risk bounds.

e Certification > best-guess. When stakes are high, prefer guaranteed ranges or proofs of
robustness to a single point prediction from a guessed-clean dataset.

e Open frontiers: extend guarantees to deep nets & categorical features, tighten bounds
under heavy missingness, and scale zonotope / SMT methods to larger models.
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Conclusion: How should we navigate data errors?

Source Data

Cancer Death Rate

BRCA

10%

SKCM

2%

aita

Diagnosis  Race

S

Training Trained
Data Model

Features Labels

BRCA | other

no

black |m|26

yes

. Model
Preprocessing —H -_ Training

CRC

Data Errors

SKCM | white [m|38

f

no

o joining o model selection

o augmentation o architecture search

o filtering o hyperparameter tuning
o imputation . ..

o normalization
o ..

any kind of problems in the training data that cause problems in model behavior

Predictive Quality Metric
Query Result Results
Correctness Metric
accuracy 0.87
Predictive fl score
Query EV%I::;{,OD = Fairness Metric
Processing equalized odds | 0.84
o calibration predictive parity
. Zlggr_egatior; ! Stability Metric
e dictiona 00RU,
. 4 P L entropy [ 0.16 |
Predictive
Query Result

En;ors

Error Detection:

Compute Data Importance

ML Pipeline Debugging:

Leverage Data Provenance

Learning from Uncertain Data:

Apply Possible Worlds Semantics

https:/navigating-data-errors.github.io
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